Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin

نویسندگان

  • Xiaoduo Pan
  • Xin Li
  • Guodong Cheng
  • Yang Hong
چکیده

Individually, ground-based, in situ observations, remote sensing, and regional climate modeling cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrains. Data assimilation techniques can be used to bridge the gap between observations and models by assimilating ground observations and remote sensing products into models to improve precipitation simulation and forecasting. However, only a small portion of satellite-retrieved precipitation products assimilation research has been implemented over complex terrains in an arid region. Here, we used the weather research and forecasting (WRF) model to assimilate two satellite precipitation products (The Tropical Rainfall Measuring Mission: TRMM 3B42 and Fengyun-2D: FY-2D) using the 4D-Var data assimilation method for a typical inland river basin in northwest China’s arid region, the Heihe River Basin, where terrains are very complex. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly over regions with complex terrains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and Evaluation of a River-Basin-Scale High Spatio-Temporal Precipitation Data Set Using the WRF Model: A Case Study of the Heihe River Basin

To obtain long term accurate high resolution precipitation for the Heihe River Basin (HRB), Weather Research and Forecasting (WRF) model simulations were performed using two different initial boundary conditions, with nine microphysical processes for different analysis parameterization schemes. High spatial-temporal precipitation was simulated from 2000 to 2013 and a suitable set of initial, bo...

متن کامل

Impact Analysis of Climate Change on Snow over a Complex Mountainous Region Using Weather Research and Forecast Model (WRF) Simulation and Moderate Resolution Imaging Spectroradiometer Data (MODIS)-Terra Fractional Snow Cover Products

Climate change has a complex effect on snow at the regional scale. The change in snow patterns under climate change remains unknown for certain regions. Here, we used high spatiotemporal resolution snow-related variables simulated by a weather research and forecast model (WRF) including snowfall, snow water equivalent and snow depth along with fractional snow cover (FSC) data extracted from Mod...

متن کامل

Future climate change impact on hydrological regime of river basin using SWAT model

Hydrological components in a river basin can get adversely affected by climate change in coming future. Manipur River basin lies in the extreme northeast region of India nestled in the lesser Himalayan ranges and it is under severe pressure from anthropogenic and natural factors. Basin is un-gauged as it lies in remote location and suffering from large data scarcity. This paper explores the imp...

متن کامل

Analysis of MODIS LST Compared with WRF Model and in situ Data over the Waimakariri River Basin, Canterbury, New Zealand

In this study we examine the relationship between remotely sensed, in situ and modelled land surface temperature (LST) over a heterogeneous land-cover (LC) enclosed in alpine terrain. This relationship can help to understand to what extent the remotely sensed data can be used to improve model simulations of land surface parameters such as LST in mountainous areas. LST from the MODerate resoluti...

متن کامل

Reconstructing Large- and Mesoscale Dynamics in the Black Sea Region from Satellite Imagery and Altimetry Data - A Comparison of Two Methods

Two remote sensing methods, satellite altimetry and 4D-Var assimilation of satellite imagery, are used to compute surface velocity fields in the Black Sea region. Surface currents derived from the two methods are compared for several cases with intense mesoscale and large-scale dynamics during low wind conditions. Comparison shows that the obtained results coincide well quantitatively and quali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017